o
    DfI                  
   @   s  d Z ddlmZ ddlZddlm  mZ ddl	m
Z
 ddlmZmZmZmZ edgZeddgZeg dZeg dZeg d	Zeg d
Zeg dZeg dZeg dZeg dZeeeeeeeeeeg
Zdd ZG dd dZG dd dZG dd dZG dd dZ G dd dZ!G dd dZ"G dd dZ#G dd  d Z$G d!d" d"Z%G d#d$ d$Z&dS )%zTests for hermite_e module.

    )reduceNpolyval)assert_almost_equalassert_raisesassert_equalassert_   )r   r	   )r   r   r	   )   r   ir   r	   )r      r   ir   r	   )r   -   r   r   r   r	   )r   ir   i   r   ir   r	   )	r   r   i\r      r   ir   r	   )
r   i  r   ir   iz  r   ir   r	   c                 C   s   t j| ddS )Ngư>)tol)herme	hermetrimx r   ^/home/ubuntu/webapp/venv/lib/python3.10/site-packages/numpy/polynomial/tests/test_hermite_e.pytrim   s   r   c                   @   s,   e Zd Zdd Zdd Zdd Zdd Zd	S )
TestConstantsc                 C      t tjddg d S )Nr
   r	   )r   r   hermedomainselfr   r   r   test_hermedomain!      zTestConstants.test_hermedomainc                 C      t tjdg d S )Nr   )r   r   	hermezeror   r   r   r   test_hermezero$      zTestConstants.test_hermezeroc                 C   r!   Nr	   )r   r   hermeoner   r   r   r   test_hermeone'   r$   zTestConstants.test_hermeonec                 C   r   )Nr   r	   )r   r   hermexr   r   r   r   test_hermex*   r    zTestConstants.test_hermexN)__name__
__module____qualname__r   r#   r'   r)   r   r   r   r   r      s
    r   c                   @   sJ   e Zd ZedddZdd Zdd Zdd	 Zd
d Z	dd Z
dd ZdS )TestArithmeticr   r   d   c                 C   s   t dD ]H}t dD ]A}d| d| }tt||d }||  d7  < ||  d7  < tdg| dg dg| dg }tt|t||d q
qd S N   At i=, j=r	   r   err_msg)rangenpzerosmaxr   hermeaddr   r   r   ijmsgtgtresr   r   r   test_hermeadd1      $zTestArithmetic.test_hermeaddc                 C   s   t dD ]H}t dD ]A}d| d| }tt||d }||  d7  < ||  d8  < tdg| dg dg| dg }tt|t||d q
qd S r/   )r5   r6   r7   r8   r   hermesubr   r   r:   r   r   r   test_hermesub;   rA   zTestArithmetic.test_hermesubc                 C   sv   t tdgdg t tdgddg tddD ]}dg| dg }dg|d  |ddg }t t|| qd S )Nr   r	   r0   )r   r   	hermemulxr5   )r   r;   serr>   r   r   r   test_hermemulxE   s   zTestArithmetic.test_hermemulxc           
      C   s   t dD ]R}dg| dg }t| j|}t dD ]<}d| d| }dg| dg }t| j|}t||}t| j|}	tt||| d k| t|	|| |d qqd S )Nr0   r   r	   r1   r2   r3   )r5   r   hermevalr   hermemulr   lenr   )
r   r;   pol1val1r<   r=   pol2val2pol3val3r   r   r   test_hermemulM   s   zTestArithmetic.test_hermemulc           
      C   s   t dD ]D}t dD ]=}d| d| }dg| dg }dg| dg }t||}t||\}}tt|||}	tt|	t||d q
qd S )Nr0   r1   r2   r   r	   r3   )r5   r   r9   hermedivrH   r   r   )
r   r;   r<   r=   cicjr>   quoremr?   r   r   r   test_hermediv[   s   zTestArithmetic.test_hermedivc                 C   s|   t dD ]7}t dD ]0}d| d| }t|d }ttj|g| tdg}t||}tt	|t	||d q
qd S )Nr0   r1   r2   r	   r3   )
r5   r6   aranger   r   rH   arrayhermepowr   r   )r   r;   r<   r=   cr>   r?   r   r   r   test_hermepowf   s   zTestArithmetic.test_hermepowN)r*   r+   r,   r6   linspacer   r@   rC   rF   rP   rV   r[   r   r   r   r   r-   .   s    

r-   c                   @   s   e Zd Zeg dZedeeZedeeeZej		dd d Z
ee
g dZdd	 Zd
d Zdd Zdd Zdd ZdS )TestEvaluation)g      @       @      @i,j->ij
i,j,k->ijkr   r0      r	   )g      ?r^   r_   c                    s   t tg dgjd tdd  fddtD }tdD ]}d| }|| }t dg| dg }t|||d qtd	D ]/}d
g| }t	| t t dgj
| t t ddgj
| t t g dj
| qAd S )Nr	   r   r
   c                    s   g | ]}t  |qS r   r   .0rZ   r   r   r   
<listcomp>       z0TestEvaluation.test_hermeval.<locals>.<listcomp>
   r1   r3   r   rc   )r	   r   r   )r   r   rG   sizer6   r\   Helistr5   r   r7   shape)r   yr;   r=   r>   r?   dimsr   r   r   test_hermevalz   s   


zTestEvaluation.test_hermevalc           
      C   s   | j \}}}| j\}}}tttj||d d | j || }t||| j}t|| t	d}	t|	|	| j}t
|jdk d S Nrc   rc   r   )r   rl   r   
ValueErrorr   
hermeval2dc2dr   r6   onesr   rk   
r   x1x2x3y1y2y3r>   r?   zr   r   r   test_hermeval2d   s   

zTestEvaluation.test_hermeval2dc           
      C   s   | j \}}}| j\}}}tttj|||d d | j || | }t|||| j}t|| t	d}	t|	|	|	| j}t
|jdk d S ro   )r   rl   r   rq   r   
hermeval3dc3dr   r6   rt   r   rk   ru   r   r   r   test_hermeval3d   s   

zTestEvaluation.test_hermeval3dc           
      C   sl   | j \}}}| j\}}}td||}t||| j}t|| td}	t|	|	| j}t	|j
dk d S )Nr`   rp   )rc   r   rc   r   )r   rl   r6   einsumr   hermegrid2drs   r   rt   r   rk   ru   r   r   r   test_hermegrid2d   s   

zTestEvaluation.test_hermegrid2dc           
      C   sr   | j \}}}| j\}}}td|||}t|||| j}t|| td}	t|	|	|	| j}t	|j
dk d S )Nra   rp   )rc   r   rc   r   rc   r   )r   rl   r6   r   r   hermegrid3dr   r   rt   r   rk   ru   r   r   r   test_hermegrid3d   s   

zTestEvaluation.test_hermegrid3dN)r*   r+   r,   r6   rX   c1dr   rs   r   randomr   r   rl   rn   r}   r   r   r   r   r   r   r   r]   p   s    r]   c                   @      e Zd Zdd Zdd ZdS )TestIntegralc           
   	   C   s.  t ttjdgd t ttjdgd t ttjdgdddg t ttjdgdgd t ttjdgdgd t ttjdgdd tdd	D ]}dg|d  dg }tjdg||d
}t|ddg qCtd	D ]7}|d }dg| dg }|gdg|  d| g }t|}tj|d|gd
}t|}tt	|t	| qdtd	D ]&}|d }dg| dg }t|}tj|d|gdd}tt
d|| qtd	D ]8}|d }dg| dg }|gdg|  d| g }t|}tj|d|gdd}t|}tt	|t	| qtd	D ]9}tdd	D ]0}	dg| dg }|d d  }t|	D ]
}tj|dd}q#tj||	d}tt	|t	| qqtd	D ]@}tdd	D ]7}	dg| dg }|d d  }t|	D ]}tj|d|gd
}qatj||	tt|	d
}tt	|t	| qMqFtd	D ]B}tdd	D ]9}	dg| dg }|d d  }t|	D ]}tj|d|gdd}qtj||	tt|	dd}tt	|t	| qqtd	D ]B}tdd	D ]9}	dg| dg }|d d  }t|	D ]}tj|d|gdd}qtj||	tt|	dd}tt	|t	| qِqd S )Nr         ?r
   r	   )lbnd)sclaxisrc   r0   )mk)r   r   r   )r   r   r   r   )r   	TypeErrorr   hermeintrq   r5   r   
poly2herme
herme2polyr   rG   list)
r   r;   r   r?   r   polr>   hermepolr   r<   r   r   r   test_hermeint   s   




			zTestIntegral.test_hermeintc                 C   s   t jd}t dd |jD j}tj|dd}t|| t dd |D }tj|dd}t|| t dd |D }tj|d	dd
}t|| d S )Nr      c                 S      g | ]}t |qS r   r   r   rd   r   r   r   rf   '  rg   z3TestIntegral.test_hermeint_axis.<locals>.<listcomp>r   r   c                 S   r   r   r   rd   r   r   r   rf   +  rg   r	   c                 S   s   g | ]	}t j|d dqS )r   )r   r   rd   r   r   r   rf   /  s    r   )r   r   )r6   r   vstackTr   r   r   r   rs   r>   r?   r   r   r   test_hermeint_axis#  s   

zTestIntegral.test_hermeint_axisN)r*   r+   r,   r   r   r   r   r   r   r      s    Sr   c                   @   r   )TestDerivativec                 C   s  t ttjdgd t ttjdgd tdD ]}dg| dg }tj|dd}tt|t| qtdD ]'}tddD ]}dg| dg }tjtj||d|d}t	t|t| q<q5tdD ])}tddD ]!}dg| dg }tjtj||dd|dd}t	t|t| qhqad S )	Nr   r   r
   r0   r	   r   rc   )r   r   )
r   r   r   hermederrq   r5   r   r   r   r   )r   r;   r>   r?   r<   r   r   r   test_hermeder6  s*   zTestDerivative.test_hermederc                 C   sl   t jd}t dd |jD j}tj|dd}t|| t dd |D }tj|dd}t|| d S )Nr   c                 S   r   r   r   r   rd   r   r   r   rf   T  rg   z5TestDerivative.test_hermeder_axis.<locals>.<listcomp>r   r   c                 S   r   r   r   rd   r   r   r   rf   X  rg   r	   )r6   r   r   r   r   r   r   r   r   r   r   test_hermeder_axisP  s   
z!TestDerivative.test_hermeder_axisN)r*   r+   r,   r   r   r   r   r   r   r   4  s    r   c                   @   s8   e Zd Zejdd d Zdd Zdd Zdd	 Zd
S )
TestVanderrb   rc   r	   c                 C   s   t d}t|d}t|jdk tdD ]}dg| dg }t|d|f t|| qt 	ddgddgdd	gg}t|d}t|jd
k tdD ]}dg| dg }t|d|f t|| qMd S )Nr   r   r   r   r	   .rc   r0      )r   rc   r   )
r6   rW   r   hermevanderr   rk   r5   r   rG   rX   )r   r   vr;   coefr   r   r   test_hermevandera  s   
zTestVander.test_hermevanderc                 C   sx   | j \}}}tjd}t||ddg}t|||}t||j}t|| t|g|gddg}t	|j
dk d S )Nrp   r	   rc   )r	   r0   r   )r   r6   r   r   hermevander2drr   dotflatr   r   rk   r   rv   rw   rx   rZ   vanr>   r?   r   r   r   test_hermevander2dr  s   
zTestVander.test_hermevander2dc                 C   s   | j \}}}tjd}t|||g d}t||||}t||j}t|| t|g|g|gg d}t	|j
dk d S )N)rc   r   r   )r	   rc   r   )r	   r0      )r   r6   r   r   hermevander3dr~   r   r   r   r   rk   r   r   r   r   test_hermevander3d  s   
zTestVander.test_hermevander3dN)	r*   r+   r,   r6   r   r   r   r   r   r   r   r   r   r   ]  s
    r   c                   @      e Zd Zdd ZdS )TestFittingc                 C   s  dd }dd }t ttjdgdgd t ttjdggdgd t ttjg dgd t ttjdgdgggd t ttjddgdgd t ttjdgddgd t ttjdgdgddggd	 t ttjdgdgdddgd	 t ttjdgdgdg t ttjdgdgg d
 t ttjdgdgg  tdd}||}t||d}tt|d t	t
||| t||g d}tt|d t	t
||| t||d}tt|d t	t
||| t||g d}tt|d t	t
||| t||g d}tt|d t	t
||| t|t||gjd}t	|t||gj t|t||gjg d}t	|t||gj t|}| }	d|dd d< d|dd d< tj||	d|d	}
t	|
| tj||	g d|d	}
t	|
| tj|t|	|	gjd|d	}t	|t||gj tj|t|	|	gjg d|d	}t	|t||gj g d}t	t||dddg t	t||ddgddg tdd}||}t||d}t	t
||| t||g d}t	t
||| t	|| d S )Nc                 S   s   | | d  | d  S )Nr	   rc   r   r   r   r   r   f  r    z$TestFitting.test_hermefit.<locals>.fc                 S   s   | d | d  d S )Nr   rc   r	   r   r   r   r   r   f2  r    z%TestFitting.test_hermefit.<locals>.f2r	   r
   r   rc   )w)rc   r
   r   r   r   )r   r	   rc   r   r0   )r   r	   rc   r   r   )rc   r   r   r	   r   )r	   y              ?r
   y             )r   rc   r   )r   rq   r   hermefitr   r6   r\   r   rI   r   rG   rX   r   
zeros_likecopy)r   r   r   r   rl   coef3coef4coef2dr   ywwcoef3wcoef2dcoef1coef2r   r   r   test_hermefit  sp   


"zTestFitting.test_hermefitN)r*   r+   r,   r   r   r   r   r   r         r   c                   @   s$   e Zd Zdd Zdd Zdd ZdS )TestCompanionc                 C   s"   t ttjg  t ttjdg d S r%   )r   rq   r   hermecompanionr   r   r   r   test_raises  s   zTestCompanion.test_raisesc                 C   s<   t ddD ]}dg| dg }tt|j||fk qd S )Nr	   r0   r   )r5   r   r   r   rk   )r   r;   r   r   r   r   test_dimensions  s   zTestCompanion.test_dimensionsc                 C   s   t tddgd dk d S )Nr	   rc   )r   r         )r   r   r   r   r   r   r   test_linear_root  s   zTestCompanion.test_linear_rootN)r*   r+   r,   r   r   r   r   r   r   r   r     s    r   c                   @   r   )	TestGaussc                 C   s   t d\}}t |d}t|j| |}dt|  }|d d d f | | }t|t	d tdtj
 }t| | d S )Nr.   c   r	   rc   )r   
hermegaussr   r6   r   r   sqrtdiagonalr   eyepisum)r   r   r   r   vvvdr>   r   r   r   test_100  s   zTestGauss.test_100N)r*   r+   r,   r   r   r   r   r   r     r   r   c                   @   sD   e Zd Zdd Zdd Zdd Zdd Zd	d
 Zdd Zdd Z	dS )TestMiscc              	   C   s   t g }tt|dg tddD ]=}tttj dd| d dd d }t |}t 	||}d}t
t||d k tt |d d t|| qd S )Nr	   r0   r   rc   r
   )r   hermefromrootsr   r   r5   r6   cosr\   r   rG   r   rI   r   )r   r?   r;   rootsr   r>   r   r   r   test_hermefromroots  s   
*
zTestMisc.test_hermefromrootsc                 C   sl   t tdgg  t tddgdg tddD ]}tdd|}tt|}t t|t| qd S )Nr	   r
   rc   r0   )r   r   
hermerootsr5   r6   r\   r   r   )r   r;   r>   r?   r   r   r   test_hermeroots
  s   zTestMisc.test_hermerootsc                 C   sb   g d}t ttj|d tt||d d  tt|d|d d  tt|ddg d S )N)rc   r
   r	   r   r
   r	   r   rc   r   )r   rq   r   r   r   )r   r   r   r   r   test_hermetrim  s
   zTestMisc.test_hermetrimc                 C   s   t tddddg d S )Nr   r   )r   r   	hermeliner   r   r   r   test_hermeline  s   zTestMisc.test_hermelinec                 C   s2   t dD ]}ttdg| dg t|  qd S Nrh   r   r	   )r5   r   r   r   rj   r   r;   r   r   r   test_herme2poly      "zTestMisc.test_herme2polyc                 C   s2   t dD ]}ttt| dg| dg  qd S r   )r5   r   r   r   rj   r   r   r   r   test_poly2herme$  r   zTestMisc.test_poly2hermec                 C   s8   t ddd}t d|d  }t|}t|| d S )Nr0      r   rc   )r6   r\   expr   hermeweightr   )r   r   r>   r?   r   r   r   test_weight(  s   
zTestMisc.test_weightN)
r*   r+   r,   r   r   r   r   r   r   r   r   r   r   r   r     s    r   )'__doc__	functoolsr   numpyr6   numpy.polynomial.hermite_e
polynomial	hermite_er   numpy.polynomial.polynomialr   numpy.testingr   r   r   r   rX   He0He1He2He3He4He5He6He7He8He9rj   r   r   r-   r]   r   r   r   r   r   r   r   r   r   r   r   <module>   s8    B^f)0M